Abstract

Bloat is a common and well studied problem in genetic programming. Size and depth limits are often used to combat bloat, but to date there has been little detailed exploration of the effects and biases of such limits. In this paper we present empirical analysis of the effects of size and depth limits on binary tree genetic programs. We find that size limits control population average size in much the same way as depth limits do. Our data suggests, however that size limits provide finer and more reliable control than depth limits, which has less of an impact upon tree shapes.Keywordssize limitsdepth limitsgenetic programmingpopulation distributionstree shape

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.