Abstract

The overall objective of this study was to test the hypothesis that +Gz (hypergravity/positive acceleration) and microgravity can both aggravate intervertebral disc degeneration (IVDD). Due to +Gz and microgravity, many pilots develop IVDD. However, the lack of animal models of IVDD under conditions of simulated +Gz and microgravity has hampered research on the onset and prevention of IVDD. Rabbits were randomly allotted to a control group, microgravity group, +Gz group, or mixed (+Gz + microgravity) group. A tail-suspension model was utilized to simulate a microgravity environment and an animal centrifuge to mimic +Gz conditions. After exposure to the above conditions for 4, 8, and 24 weeks, the body weights (BW) of animals in the control group gradually increased over time, while those of animals in the microgravity and mixed groups both decreased (p < 0.001). As compared with the control group, the proteoglycan content of animals in the other three groups was significantly reduced (F = 192.83, p < 0.001). The imageological, histopathological, and immunohistochemical changes to the L6–S1 intervertebral disc samples suggests that the effects of +Gz and microgravity can aggravate IVDD over time. The mixed effects of +Gz and microgravity had the greatest effect on degeneration and +Gz had a particularly greater effect than microgravity.

Highlights

  • IntroductionThe overall objective of this study was to test the hypothesis that +Gz (hypergravity/positive acceleration) and microgravity can both aggravate intervertebral disc degeneration (IVDD)

  • The overall objective of this study was to test the hypothesis that +Gz and microgravity can both aggravate intervertebral disc degeneration (IVDD)

  • The body weights (BW) of animals in the control group gradually increased over time (F = 484.76, p < 0.001), while those of animals in the microgravity group (F = 66.02, p < 0.001) and mixed (+Gz + microgravity) group (F = 212.09, p < 0.001) both decreased

Read more

Summary

Introduction

The overall objective of this study was to test the hypothesis that +Gz (hypergravity/positive acceleration) and microgravity can both aggravate intervertebral disc degeneration (IVDD). Due to +Gz and microgravity, many pilots develop IVDD. A tail-suspension model was utilized to simulate a microgravity environment and an animal centrifuge to mimic +Gz conditions. After exposure to the above conditions for 4, 8, and 24 weeks, the body weights (BW) of animals in the control group gradually increased over time, while those of animals in the microgravity and mixed groups both decreased (p < 0.001). The rate of intervertebral disc degeneration (IVDD) is approximately quadrupled among pilots and astronauts following spaceflight because of exposure to the specific environmental conditions of microgravity and hypergravity[4,5]. The speed of the centrifuge was set to 79.1 rpm to obtain +7 Gz

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.