Abstract

The effect of various silicon levels on the reaction between iron panels and Al-Zn-Si liquid baths during hot dipping at 610°C was studied. Five different baths were used: 55Al−0.7Si−Zn, 55Al−1.7Si−Zn, 55Al−3.0Si−Zn, 55Al−5.0Si−Zn, and 55Al−6.88Si−Zn (in wt pct). The phases which formed as a result of this reaction were identified as Fe2Al5 and FeAl3 (binary Fe−Al phases with less than 2 wt pct Si and Zn in solution),T1, T2, T4, T8, andT 5H (ternary Fe−Al−Si phases), andT 5C (a quaternary Fe−Al−Si−Zn phase). Compositional variations through the reaction zone were determined. The phase sequence in the reaction zone of the panel dipped for 3600 seconds in the 1.7 wt pct Si bath was iron panel/(Fe2Al5+T 1)/FeAl3/(T 5H+T 5C)/overlay. In the panel dipped for 1800 seconds in the 3.0 wt pct Si bath the reaction zone consisted of iron panel/Fe2Al5/(Fe2Al5+T 1)/T 1/FeAl3/(FeAl3+T 2)/T 5H/overlay. In the panel dipped for 3600 seconds in the 6.88 wt pct Si bath the phase sequence was iron panel/Fe2Al5/(Fe2Al5+T1)/(T1+FeAl3)/(T1+T2)/T2/T8/T4/overlay. The growth kinetics of the reaction zone were also studied. A minimum growth rate for the reaction zone which formed from a reaction between the iron panel and molten Al−Zn−Si bath was found in the 3.0 wt pct Si bath. The growth kinetics of the reaction layers were found to be diffusion controlled in the 0.7, 1.7, and 6.88 wt pct Si baths, and interface controlled in the 3.0 and 5.0 wt pct Si baths. The presence of the interface between theT2/T5H, Fe2Al5/T 1, orT 1/FeAl3 phases is believed responsible for the interface controlled growth kinetics exhibited in the 3.0 and 5.0 wt pct Si baths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.