Abstract
In the absence of silicate in the growth medium, Netzelia tuberculata cells withdraw their feeding lobopodia, become quiescent, and cease to divide. Upon replenishment of silicate, growth resumes within 18-24 hours. Cytoplasmic changes produced by a low silicate medium result in a zonal arrangement, with siliceous particles at the outer periphery of the cytoplasm in a region rich in Golgi bodies (Region A), a more centrally located layer containing endoplasmic reticulum, lipid reserves, and finely granular cytoplasm (Region B), and a region of partially digested food and waste material fringed by fine rhizopodia extending into the central space of the test (Region C). The reserve siliceous particles in the outer peripheral cytoplasm are foreign particles that contain a fragile deposit of silica and appear to be incomplet. This may be a mechanism for conserving silica in the low-silicate medium by coating particles instead of making particles of solid silica de novo. Upon addition of silicate to the growth medium, new siliceous particles are synthesized within vacuoles in the region of the Golgi apparatus within 2-18 hours. Vacuoles containing fine silica deposits, characteristic of new particle production, are surrounded by Golgi-derived vesicles previously shown to be a source of membrane for the silica-secreting vacuoles. The newly synthesized particles are solid silica as is characteristic of de novo secreted test particles, in contrast to the numerous silica-coated foreign bodies found in quiescent cells produced in low-silicate medium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.