Abstract

There is evidence demonstrating the protective effect of cGMP-specific phosphodiesterase type 5 (PDE5) inhibitors against ischemic injury in certain tissues. In this study, sildenafil, a potent inhibitor of PDE5, was tested for its beneficial effects in the prevention of disrupted ileal contractility and damage to tissue caused by intestinal ischemia–reperfusion in rats. Male Sprague–Dawley rats were divided into four groups: sham-operated; sham-operated with sildenafil pretreatment; ischemia–reperfusion with vehicle pretreatment; and ischemia–reperfusion with sildenafil pretreatment. The superior mesenteric artery was occluded for 45 min to induce ischemia. The clamp was then removed for a 60 min period of reperfusion. Sildenafil (1 mg/kg, i.v.) or saline was administered prior to the surgical procedure in the ischemia–reperfusion and sham-operated groups. Isometric contractions of the ileal segments in response to acetylcholine or electrical field stimulation (120 V, 2 ms pulse for 5 s, 1–20 Hz) were recorded. Additionally, levels of thiobarbituric acid reactive substances and myeloperoxidase activity were measured in addition to a histopathological examination of the ileal tissue. The contractions induced by both acetylcholine and electrical field stimulations were markedly inhibited after ischemia–reperfusion. Sildenafil pretreatment (1 mg/kg, i.v.) abolished the inhibition of responses to acetylcholine. The increased levels of thiobarbituric acid reactive substances and myeloperoxidase activity caused by ischemia–reperfusion were reversed to control levels with sildenafil pretreatment. Intestinal ischemia–reperfusion caused severe ischemic injury in rat ileum, which was prevented by sildenafil. These results suggest that sildenafil pretreatment has a protective effect against ileal dysfunction and damage induced by intestinal ischemia–reperfusion in the rat.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.