Abstract
Derived-band auditory brainstem responses (ABRs) were obtained in 43 normal-hearing and 80 cochlear hearing-impaired individuals using clicks and high-pass noise masking. The response times across the cochlea [the latency difference between wave V's of the 5.7- and 1.4-kHz center frequency (CF) derived bands] were calculated for five levels of click stimulation ranging from 53 to 93 dB p.-p.e. SPL (23 to 63 dB nHL) in 10-dB steps. Cochlear response times appeared to shorten significantly with hearing loss, especially when the average pure tone (1 to 8 kHz) hearing loss exceeded 30 dB. Examination of derived-band latencies indicates that this shortening is due to a dramatic decrease of wave V latency in the lower CF derived band. Estimates of cochlear filter times in terms of the number of periods to maximum response (Nmax) were calculated from derived-band latencies corrected for gender-dependent cochlear transport and neural conduction times. Nmax decreased as a function of hearing loss, especially for the low CF derived bands. The functions were similar for both males and females. These results are consistent with broader cochlear tuning due to peripheral hearing loss. Estimating filter response times from ABR latencies enhances objective noninvasive diagnosis and allows delineation of the differential effects of pathology on the underlying cochlear mechanisms involved in cochlear transport and filter build-up times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.