Abstract

BackgroundDietary fat is considered one of the most important factors associated with blood lipid metabolism and plays a significant role in the cause and prevention of atherosclerosis that has been widely accepted as an inflammatory disease of the vascular system. The aim of the present study was to evaluate the effect of genetically modified flaxseed (W86) rich in phenylpropanoid compounds and hydrolysable tannin in high cholesterol-induced atherosclerosis rabbit models compared to parental cultivar Linola.MethodsTwenty-Eight White New Zealand white rabbits aged 6 months were randomly divided into four groups, control group, high cholesterol group (10 g/kg), Linola flaxseed group (100 g/kg) and W86 flaxseed group (100 g/kg). The rabbits were fed a normal diet or a high cholesterol diet for 10 weeks. Levels of blood lipids, hematological values, total antioxidative status and superoxide dismutase activity in serum were determined. Moreover, body weight and feed intake were measured after sixth and tenth weeks. After each stage of the experiment atherogenic indexes (non-HDL-C/HDL-C, LDL-C/HDL-C, and atherogenic index of plasma) was calculated.ResultsThe intake of a dyslipidaemic diet negatively influenced lipid profile in rabbits at the 10 weeks of feeding. W86 flaxseed significantly decreased total cholesterol, LDL-C, VLDL-C and TG serum levels in cholesterolemic rabbits compared with parental Linola after 10 weeks. Atherogenic indexes decreased over time with a significant difference between the diets and they were the best for W86 flaxseed. Similarly, the experimental addition of W86 significantly decreased atherogenic predictors such as heterophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and the mean platelet volume-to-lymphocyte ratio. In rabbits, W86 flaxseed increased the activity of superoxide dismutase and total antioxidative status compared to Linola.ConclusionsResults of the presented study suggest that the addition of W86 flaxseed alleviate serum lipid changes in high cholesterolemic diet-administered rabbits. W86 flaxseed significantly reduced atherogenic indexes, as compared with the Linola and indicate that W86 flaxseed more effectively red CVD risk factors during hypercholesterolemia. Moreover, the presented result suggested that W86 flaxseed can be a part of a heart-healthy and antiatherogenic diet for the human.

Highlights

  • Dietary fat is considered one of the most important factors associated with blood lipid metabolism and plays a significant role in the cause and prevention of atherosclerosis that has been widely accepted as an inflammatory disease of the vascular system

  • Our results show that exposure of rabbits to W86 flaxseed during the full fattening period did not have a major impact on the body weight and feed intake

  • The present study suggested that W86 flaxseed from genetically modified Linola affect lipid metabolism and lower atherogenic indexes in rabbits

Read more

Summary

Introduction

Dietary fat is considered one of the most important factors associated with blood lipid metabolism and plays a significant role in the cause and prevention of atherosclerosis that has been widely accepted as an inflammatory disease of the vascular system. Dyslipidemia, including higher serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) and lower high-density lipoprotein cholesterol (HDL-C), is a major risk factor for atherosclerosis. Dietary fat is considered one of the most important factors associated with blood lipid metabolism and plays a significant role in the cause and prevention of atherosclerosis [3]. Because cholesterol lowering is a major target for reducing CVD risk, dietary interventions to reduce TC and TG levels in individuals with borderline dyslipidemia and obesity without overall cardiovascular risk are becoming mandatory [3]. Nutraceuticals and functional food ingredients that are beneficial to vascular health may represent useful compounds that are able to reduce the overall cardiovascular risk induced by dyslipidaemia by acting parallel to statins or as an adjuvants [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call