Abstract
The effects of salt ion type and salt concentration on flux and rejection improvement of magnetically activated micromixer nanofiltration membranes were investigated. Polymers with varying chain length and chain density were grafted on the NF270 membranes using the well-controlled atom transfer radical polymerization reaction. Superparamagnetic nanoparticles that respond to an oscillating magnetic field were conjugated at the polymer chain ends. The effects of micromixing on breaking the concentration polarization boundary layer were investigated by determining the percentage improvement in flux and rejection in the presence of an external oscillating field. Systematic trends on the salt ion size and feed concentration as well as grafting degrees were observed. The magnetically activated micromixers are more effective in breaking down severer concentration polarization when the charge and concentration of the salt ions are higher. In addition, higher density and longer polymer chains induce stronger micro...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.