Abstract

Abstract The effect of rotation on the nonlinear reflection of internal waves from a sloping boundary is examined. The waves propagate at an angle β to the horizontal in an ocean of locally uniform buoyancy frequency N, and the boundary slopes at angle α to the horizontal. The following modifications are found when rotation is taken into account: 1) The modulus of the Lagrangian alongslope drift caused by the waves may be increased by an order of magnitude, and the level above the boundary at which the greatest drift is generated is no longer at z = 0, but depends on f/N where f is the Coriolis frequency, and the direction of the drift close to the boundary may be reversed. 2) Eulerian upslope currents associated with reflection are increased by a factor O(2). Particularly large currents are found to be generated for incident waves travelling almost directly downslope and when β > α. 3) The mean density and the vertical displacement of isopycnals caused by the waves are increased, possibly by factors O(2)...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.