Abstract

Road salt (mainly NaCl) is commonly used during the winter to ensure road and pavement safety; however, the long-term application of NaCl has negative consequences on soil and the water environment. The aims of the present review were to evaluate the impact of road salt on catchment processes which accelerate the eutrophication of waters, and to identify a possible approach for reducing the impact of winter salt treatments of roads and sidewalks, on water body quality. The objectives were implemented in accordance with the ecohydrological approach, which recommends using hierarchical steps to solve problems. The first step was the monitoring of threats, in which the causes of high chloride (Cl) concentrations in groundwater and surface water were identified. The results indicate that long-term winter application of road salt increases the annual mean concentrations of Cl in rivers and lakes, due to Cl entering groundwater. The second step was a cause-effect analysis of the impact of NaCl on the abiotic processes in soil and water, and on the biotic response to chloride exposure. Chlorides appear to decrease the biodiversity of aquatic animals and plants but favour the growth of phytoplankton, especially cyanobacteria. Moreover, Cl reduces the self-purification processes of water by decreasing nutrient accumulation in macrophytes, decreasing the denitrification rate and reducing organic matter decomposition. The third step was to evaluate possible solutions for reducing the negative impact of NaCl on the environment, and to improve the effectiveness of alternative de-icing agents. An analysis of available literature indicates that a system-based approach integrating engineering knowledge with an understanding of biological and hydrological processes is necessary to indicate solutions for reducing environmental risks from road salt use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.