Abstract

The rapid solidification and subsequent thermal cycles that material is subjected to during additive manufacturing (AM) of a component result in a buildup of residual stresses, which lead to part distortion, and negatively impact the component's mechanical properties. We present a method for using neutron diffraction to validate thermomechanical models developed to predict the residual stresses in Inconel 625 walls fabricated by laser-based directed energy deposition. Residual stress calculations from neutron diffraction measurements depend strongly on the determination of stress-free lattice spacings. After measurement of stressed lattice spacings in Inconel 625 walls, reference samples were obtained by extracting thin slices from the walls and cutting comb-type slits into these slices. Reference lattice spacings were measured in these slices, as well as equivalent slices that were also subjected to stress-relieving heat treatment. These heat treatments changed the reference lattice spacings, and therefore affected residual strain measurements. Further, this study shows the importance of using location-dependent reference lattice spacing, as during AM, the thermal history, and therefore elemental composition and stress-free lattice spacing, vary with position. Residual stresses measured by neutron diffraction along the build direction using comb-type reference samples without heat treatment were in good agreement with thermomechanical modeling predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call