Abstract

The functional link between food as an energy source and metabolizable energy is the digestive tract. The digestive organs may change in size, structure, or retention time in response to energetic demands of the animal. Very efficient digestive tracts may be better at processing food but require higher energetic investments for maintenance even when post-absorptive. These costs influence the resting metabolic rate (RMR) that is defined as the energy necessary to fuel vital metabolic functions in a resting animal. In bats a trade-off between the necessity for a highly efficient digestive tract and moderate energetic maintenance costs may be particularly important. We hypothesized that low RMR coincides with low digestive efficiency (defined as apparent metabolizable energy coefficient (MEC)) and that phases of increased energetic demand are compensated for by increased digestive efficiency. We measured RMR and apparent MEC in the bats species Myotis nattereri, M. bechsteinii, and Plecotus auritus. In support of our hypothesis, M. nattereri has the lowest mass-specific RMR of the three species and the lowest apparent MEC. However, apparent MEC did not change during phases with differing energetic demands in any of the bat species, probably because bats operate at the limit of their sustainable energy demand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.