Abstract

This study describes the influence of relative humidity (RH) and reducing gases on the temperature coefficient of resonant frequency (TCF) of ZnO-based film bulk acoustic wave resonator (FBAR). Upon exposure to moisture or reducing gases, the TCF of FBAR decreased. Water molecules can replace adsorbed oxygen on the ZnO surface. This process was less effective at high temperature, resulting in a lower TCF in high RH. Reducing gases, such as acetone, can reduce the density of ZnO through reaction with the adsorbed oxygen, leading to a lower TCF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call