Abstract

The determinants of the aortic regurgitant velocity profile have been investigated using computer and in vitro simulations in which regurgitant orifice area, ventricular and aortic compliance, and systemic vascular resistance could be independently varied. In the study, regurgitant fraction was altered, either by changing the size of the regurgitant orifice or by holding the regurgitant orifice constant and changing chamber compliance or systemic vascular resistance. Upon increasing regurgitant fraction by increasing the size of the regurgitant orifice, the slope got steeper and the pressure half-time shortened, the response anticipated in current clinical practice. However, when the regurgitant orifice was kept constant and regurgitation fraction was increased by increasing the systemic vascular resistance or by increasing the compliance of the left ventricle, slope became less steep and pressure half-time lengthened. Multivariate analysis was used to quantify the relationship of regurgitant fraction to slope and pressure half-time. When orifice area was allowed to vary, slope was related directly (multiple r = 0.78, p < 0.001) and half-time was related inversely (multiple r = 0.66, p < 0.001) to regurgitant fraction. With the orifice area fixed, however, directionally opposite responses were seen; slope varied inversely (multiple r = 0.87, p < 0.001), whereas half-time varied directly (multiple r = 0.88, p < 0.001) with regurgitant fraction. This study suggests that the utility of the slope and pressure half-time of the regurgitant velocity tracing in clinical practice relates to their ability to discriminate regurgitant orifices of differing sizes. However, these findings also suggest caution in the conventional interpretation of these indices in individual patients in whom changes in regurgitant fraction are produced by pharmacologic manipulation of the systemic vascular resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.