Abstract

The effects of different rapid thermal annealing temperatures on the optical properties of InAs double quantum dots (DQDs) grown by molecular beam epitaxy using a partial-capping-and-regrowth process have been investigated. Improvement of the material quality is indicated by enhanced photoluminescence (PL) intensity and narrower PL linewidth. The blueshift of the PL emission peak with increasing annealing temperature is due to the interdiffusion of group III atoms during the annealing process, which is confirmed by the temperature dependence of the PL peak position. Thermal quenching of the PL intensity is observed at temperature over 110 K, and the main activation energy decreases with annealing temperature, consistent with a reduced confining potential from the interdiffusion of group III atoms. All of these results are similar to those of single quantum dots reported in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.