Abstract

In single-field, slow-roll inflationary models scalar and tensorial (Gaussian) perturbations are usually characterized by the so called power spectrum in momentum space. Even though these power spectra are finite and well define in momentum space, typical ultraviolet divergences in quantum field theory appear when these quantities are expressed in position space. The requirement of a finite variance in position space forces the introduction of regularization technics in quantum field theory in an expanding universe. The regularization process has an important impact on the predicted scalar and tensorial power spectra for wavelengths that today are at observable scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.