Abstract

An investigation on the viability of pulsed jets as active vortex generator devices was conducted. The devices were installed and tested on an adverse pressure gradient turbulent boundary layer designed to simulate the suction side of a conventional aircraft wing. Both co-rotating and counter-rotating jet geometries were used. The duty cycle and frequency of pulsation were varied and their effects were investigated by measuring the skin friction gains at a predefined location (the location of the minimum skin friction for the un-actuated situation) on the adverse pressure gradient turbulent boundary layer. Pulsing the jets proved to be successful in increasing the wall skin friction and therefore potentially delaying separation. The improvements in wall shear stress were approximately proportional to the duty cycle. The frequency of jet pulsation was found to be important for attaining optimal gains, however no clear relationship between frequency and shear stress gain was observed. Phase averaged wall shear stress measurements far downstream of actuation indicate that quasi-steady structures are introduced by the vortex generators when actuating with a sufficiently high pulse frequency. In this situation interactions between successive structures produced by the jets were likely to be occurring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.