Abstract

The synthesis of precursors for lithium- and manganese-rich xLi2MnO3•(1-x)LiMO2 (M = Ni, Mn, Co) (LMR-NMC) materials is generally carried out via co-precipitation using a continuously stirred tank reactor (CSTR) under steady-state conditions. But during the early stages of research (e.g., when screening compositional spaces of interest), using a CSTR in steady-state mode can be time consuming and wasteful. An alternative is to operate the reactor in semi-batch mode, which shortens reaction times and reduces the amount of waste. However, the effect of this mode on the product is not well documented. The present work investigates how several process variables affect the physical properties of Mn-rich NMC carbonate precursors prepared under semi-batch operation of a CSTR. The process variables examined are pH, ammonia concentration of feed solution, process temperature, stirring speed, and reaction time. The results can help guide research-scale production to support efficient development of Mn-rich carbonates for cathode oxides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.