Abstract

Additive manufacturing also known as 3D printing is being utilised in electrochemistry to reproducibly develop complex geometries with conductive properties. In this study, we explored if the electrochemical behavior of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes was influenced by printing direction. The electrodes were printed in both horizontal and vertical directions. The horizsontal direction resulted in a smooth surface (HPSS electrode) and a comparatively rougher surface (HPRS electrode) surface. Electrodes were characterized using cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. For various redox couples, the vertical printed (VP) electrode showed enhanced current response when compared the two electrode surfaces generated by horizontal print direction. No differences in the capacitive response was observed, indicating that the conductive surface area of all types of electrodes were identical. The VP electrode had reduced charge transfer resistance and uncompensated solution resistance when compared to the HPSS and HPRS electrodes. Overall, electrodes printed in a vertical direction provide enhanced electrochemical performance and our study indicates that print orientation is a key factor that can be used to enhance sensor performance.

Highlights

  • With improved availability of 3D printers and increased diversity of conductive filaments been made available, addictive manufacturing has become a viable cost-effective approach for design and development of electrochemical sensors of complex geometries with high reproducibility

  • Pb2+ via anodic stripping9. 3D printed metal electrodes have been shown to be suitable for the measurement of various analytes, where improved analytical performance and electrode stability compared to glassy carbon electrodes were shown[10,11]

  • The smooth surface of the horizontal printed smooth surface (HPSS) electrode was generated due to the first layer of the fused deposition modelling (FDM) print being thinner than the main layer thickness

Read more

Summary

Introduction

With improved availability of 3D printers and increased diversity of conductive filaments been made available, addictive manufacturing has become a viable cost-effective approach for design and development of electrochemical sensors of complex geometries with high reproducibility. 3D printed metal electrodes have been shown to be suitable for the measurement of various analytes, where improved analytical performance and electrode stability compared to glassy carbon electrodes were shown[10,11]. These studies clearly highlight the performance benefits of 3D printed materials but did not indicate if the approach taken to create 3D printed geometries could have an influence on the electrochemical behaviour of the conductive material. The aim of our study was to explore the electrochemical behaviour of 3D printed ABS/carbon black surfaces that were printed either horizontally or vertically. The electrodes were investigated using various redox couples with a range of electrochemical approaches to investigate their conductive behaviour and ability to serve as sensors for electrochemical analysis

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call