Abstract
A series of experiments was designed to characterize the cytochrome P-450-dependent activation of 7 genotoxic carcinogens in the Salmonella preincubation assay by hepatic postmitochondrial fractions (S9) from the oyster toadfish and the Americal eel and by renal S9 from the toadfish. Significant S9-dependent mutagencity was observed for benzo[ a]pyrene (BAP), 2-aminoanthracene (2AA), aflatoxin B1 (AFB1), 7,12-dimethylbenz[ a]anthracene (DBMA) and cyclophosphamide (CP) with hepatic S9 from untreated fish (UI S9) of both species and with renal S9 from untreated toadfish, although renal UI S9 was only marginally effective for activating AFB1. Neither UI S9 from toadfish liver or kidney nor that from eel liver consistently affected the direct mutagenicity of ethylene dibromide (EDB) or substantially activated dimethylnitrosamine (DMN). Pretreatment of toadfish with 3-methylcholanthrene (MC) decreased the mutagenicity of 2AA and increased the mutagenicities of BAP, AFB1 and DMBA, whereas, pretreatment of eels with MC increased the mutagenicities of BAP, 2AA and AFB1. Pretreatment of toadfish with Aroclor 1254 (AC) decreased the mutagenicity of AFB1 and increased the mutagenicity of 2AA, whereas, pretreatment of eels with AC increased the mutagenicities of BAP and DMBA. Pretreatment of toadfish with β-napthoflavone (BNF) effected changes similar to those by pretreatment with MC except that the mutagenicity of AFB1 was not increased. Coincubation with 10 −4 M α-napthoflavone (ANF) decreased the mutagenicity of BAP mediated by toadfish MC and BNF S9 and eel AC S9 and decreased the mutagenicity of AFB1 mediated by toadfish MC and BNF S9 and by eel MC S9. Coincubation with ANF increased the mutagenicity of AFB1 mediated by toadfish and eel AC S9 and increased the mutagenicity of 2AA mediated by eel AC S9. Pretreatment of toadfish with MC, BNF and AC decreased the mutagenicity of 2AA mediated by renal S9 and ANF decreased the mutagenicity of 2AA mediated by renal UI and BNF S9. MC pretreatment of toadfish and eels and BNF pretreatment of toadfish induced BAP monooxygenase activity in hepatic microsomes. ANF (10 −4 M) inhibited the BAP monooxygenase activity of MC microsomes from toadfish and eels and of BNF microsomes from toadfish. The conjugation effectors diethyl maleate and salicylamide alone or combined had little or no effect on the mutagenicities of BAP and 2AA mediated by toadfish and eel UI and MC S9. These results suggest BAP and 2AA are metabolized by different cytochrome P-450-dependent enzymes in both species and that, whereas, MC and BNF pretreatment effect similar changes in cytochrome P-450 populations in toadfish liver, MC and AC pretreatment effect different changes in cytochrome P-450 populations in the livers of either species. The results also suggest that the effects of pretreatment of these marine species with particular cytochrome P-450 inducers on the S9-mediated mutagenicities of particular genotoxic carcinogens can be species-dependent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mutation Research/Environmental Mutagenesis and Related Subjects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.