Abstract

Abstract α-Quartz and its homeotypes are of great importance for both materials and Earth sciences. The properties of these materials depend strongly on their crystal structures and particularly the intertetrahedral bridging angle and the tetrahedral tilt angle. These angles are highly dependent on composition and the external parameters pressure and temperature. The behavior of the eleven known α-quartz homeotypes, along with examples of α-quartz-type solid solutions, are compared. The distortion in α-quartz-type structures decreases as a function of temperature and increases as a function of pressure. Thermal stability depends on initial structural distortion and on the electronic configuration of the cation. Pressure stability also depends on the former and on cation size. Transitions to new crystalline and/or amorphous forms, often with increased cation coordination number, are commonly observed at high-pressure. The combined use of high-pressure and high-temperature can be used to synthesize novel α-quartz homeotypes in compounds with small cations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.