Abstract

Concentrations of phosphorus metabolites and intracellular pH have been measured in non-pregnant, late-pregnant and post-partum rat uterus using 31P nuclear magnetic resonance (31P n.m.r.). Intact uterine tissue was superfused with oxygenated de-Jalon solution at 4, 20 or 37 degrees C while inside the n.m.r. spectrometer. The phosphocreatine concentration [PCr], was higher and the inorganic phosphate concentration [Pi], lower than values determined by chemical analysis of extracts from both pregnant and non-pregnant rat uterus. [PCr] was 1.4-fold greater in late-pregnant than in non-pregnant rat uterus. Following parturition, large changes were observed in [PCr], [Pi] and in an unidentified metabolite in the phosphomonoester (PME) region of the n.m.r. spectrum. The time course of the recovery of these metabolites to prepregnant values was determined. The [PCr] remained below the non-pregnant value for at least 1 week post-partum and the [Pi] was elevated, compared to the non-pregnant value, during this period. More rapid changes were seen in the [PME], which doubled on day 0 post-partum but almost returned to its non-pregnant value on day 1 post-partum. No significant difference was observed between intracellular pH values in late-pregnant and non-pregnant rat uterus; however, there was a large acid shift following parturition. Intracellular pH depended upon the temperature at which the tissue was maintained. The effect of muscular work during parturition was investigated by comparing Caesarian-sectioned uteri with uteri which had undergone normal parturition. Uteri examined 1 day after Caesarian operation showed no differences in metabolite levels from normal, 1 day post-partum uteri. We conclude that concentrations of phosphorus metabolites depend upon the physiological state of the uterus. We suggest that the changes following parturition are not a consequence of the mechanical work performed by the uterus, but must be caused by some other event associated with parturition such as hormonal changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call