Abstract

In cold spray process, impacting velocity and critical velocity of particles dominate the deposition process and coating properties for given materials. The impacting velocity and critical velocity of particles depend on the powder properties and cold spray conditions. In the present study, the in-flight particle velocity of copper powder in low pressure cold spraying was measured using an imaging technique. The effects of particle size and particle morphology on in-flight particle velocity and deposition efficiency were investigated. The critical velocity of copper powder was estimated by combining the in-flight particle velocity and deposition efficiency. The effect of annealing of feedstock powder on deposition and critical velocity was also investigated. The results showed that the irregular shape particle presents higher in-flight velocity than the spherical shape particle under the same condition. For irregular shape particles, the in-flight velocity decreased from 390 to 282 m/s as the particle size increases from 20 to 60 μm. Critical velocities of about 425 m/s and more than 550 m/s were estimated for the feedstock copper powder with spherical and irregular shape morphology, respectively. For the irregular shape particles, the critical velocity decreased from more than 550 to 460 m/s after preheating at 390 °C for 1 h. It was also found that the larger size powder presents a lower critical velocity in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.