Abstract

Construction of Z-scheme graphitic carbon nitride-titanium dioxide nanotubes (C3N4-TNT) has been known useful to optimize the band structure for improving photon capture and for accelerating charge carrier separation and transfer rate in photoelectrochemical water splitting (PECWS) cells. However, the reported operating potential window in a PECWS cell, often in 0 – 1.23 VRHE (volt versus reversible hydrogen electrode) plus its overpotential, is too narrow to understand the C3N4-TNT electrode. Herein, a broad potential window of −0.5 − 2.5 VRHE is applied to C3N4-TNT@Ti and recorded via the polarization test under chopped sunlight to analyze the effect of both electrons from external electrical circuit and photons from simulated sunlight. In 0 – 2.5 VRHE, the potential enhances the photocurrent density. For example, at 1.6 VRHE, the C3N4-TNT sample exhibits 1.8-time higher photocurrent density than that of pure TNT. In −0.5 − 0 VRHE, i.e., both samples do not give photo-current response. In addition, for advanced water oxidation/reduction beyond WS to oxygen/hydrogen, a large potential window will be expected. Further, the light capture ability, the charge carrier recombination rate, and the electron flow path through the C3N4-TNT junction without and with reverse/forward potentials are discussed to elucidate the effect of the applied potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call