Abstract
Evaporation losses from four water catchment areas under different land uses and climatic conditions were calculated using formulations developed from small plot studies. These formulations, dependent on rainfall inputs, potential evaporation and air temperature, were extrapolated to the catchment scale using land classifications based on analysing remotely sensed imagery. The approach adopted was verified by comparing the estimated annual evaporation losses with catchment water use, given by the difference between rainfall inputs and stream flow outputs, allowing for changes in soil moisture. This procedure was repeated using modified values of rainfall, potential evaporation and air temperature, as given by a climate change scenario. The computed evaporation losses were used in annual water balances to calculate stream flow losses under the climate change scenario. It was found that, in general, stream flow from areas receiving high rainfall would increase as a result of climate change. For low rainfall areas, a decrease in stream flow was predicted. The largest actual changes in stream flow were predicted to occur during the winter months, although the largest percentage changes will occur during the summer months. The implications of these changes on potable water supply are discussed. © 1998 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.