Abstract

Objective: To evaluate the effect of platelet-rich fibrin extract (PRFe) on the adhesion, proliferation and differentiation of MC3T3-E1 cells cultured on the titanium discs. Methods: Samples were divided into experimental group (P) and control group (D). Group P used the α-minimal essential medium (α-MEM) containing PRFe (0.5%), while group D used only the α-MEM. Cell adhesion and cytoskeleton were observed using scanning electron microscopy (SEM) and laser scanning confocal microscopy (LSCM). Methyl thiazolyl tetrazolium (MTT) assay to detect the number of the osteoblasts at 1, 3, 5, 7 d; the activity of alkaline phosphatase (ALP) to detect the differentiation of osteoblast at 1, 3, 5, 7 d; the level of osteogenetic biomarkers core-binding factorα1 (cbfα1) and osteocalcin (OCN) were quantified by quantitative real-time PCR (qRT-PCR) at 3 and 7 d. Results: SEM and LSCM showed that the adhesion and filaments of group P were higher than those of group D at each time point. MTT assay showed that the absorbance were significantly increased in group P (1 d: 0.299±0.002, 3 d: 0.517±0.004, 5 d: 0.810±0.002, 7 d: 1.203±0.011) compared with group D (1 d: 0.198±0.003, 3 d: 0.399±0.002, 5 d: 0.588±0.002, 7 d: 0.897±0.005) at each time points (P<0.05). Furthermore, the ALP activity of group P (1 d: 0.162±0.004, 3 d: 0.289±0.001, 5 d: 0.491±0.006, 7 d: 0.647±0.005) was significantly higher than that of group D (1 d: 0.121±0.003, 3 d: 0.191± 0.006, 5 d: 0.252±0.004, 7 d: 0.365±0.012), (P<0.05). Moreover, the qRT-PCR showed that the Cbfα1 and OCN gene expression in group P (Cfbα1, 3 d: 1.50±0.04, 7 d: 1.94±0.06; OCN, 3 d: 3.37±0.17, 7 d: 3.92± 0.04) were significantly higher than that in group D(Cfbα1, 3 d: 1, 7 d: 1.18±0.13; OCN, 3 d: 1, 7 d: 2.34± 0.09) (P<0.05). Conclusions: PRFe promoted the adhension, proliferation and differentiation of MC3T3-E1 cells on the titanium discs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call