Abstract

The demand for synthetic bone graft biomaterials has grown in recent years to alleviate the dependence on natural bone grafts and metal prostheses which are associated with significant practical and clinical issues. Biopolymer nanocomposites are a class of materials that display strong potential for these synthetic materials, especially when processed using additive manufacturing technologies. Novel nanocomposite biomaterials capable of masked stereolithography printing have been developed from functionalized plant-based monomers and hydroxyapatite (HA) with mechanical properties exceeding those of commercial bone cements. However, these biomaterials have not been evaluated under relevant physiological conditions. The effects of temperature (room temperature vs. 37 °C) and water absorption on the physical, surface, and mechanical properties of HA-containing biopolymer nanocomposites were investigated. Exposure to relevant conditions led to substantial impacts on material performance, such as significantly reduced mechanical strength and stiffness. For instance, a composite containing 10 vol% HA and functionalized monomers had 26 and 21% reductions in compressive yield strength and elastic modulus, respectively. After 14 days incubation in phosphate buffered saline, the same composition displayed a 62% decrease in compressive yield strength to 28 MPa. This manuscript demonstrates the relevance and importance of evaluating biomaterials under appropriate physiological conditions throughout their development and provides direction for future material development of HA-containing biopolymer nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.