Abstract

The purpose of this paper was to investigate the effect of photon flux on the recorded energy spectrum and images produced with a photon-counting detector. We used a photon-counting cadmium telluride (CdTe) x-ray detector (model PID350, Oy Ajat, Finland). The CdTe array was composed of 16 384 pixels, each 0.35 × 0.35 × 0.75 mm3 in dimension. The photon flux is controlled by an additional aluminum filter (1, 10, 20, 30 and 40 mm). Images were acquired at three different tube voltages (50, 70 and 90 kVp) with various thicknesses of photon flux control (PFC) filters. The data acquisition time was changed to acquire an approximately equal number of counts within the selected energy window between different thicknesses of PFC filters at the same tube voltage. A phantom was manufactured to evaluate the photon flux effect on the image. The phantom was made from polymethyl methacrylate and four concentrations of iodine. The photon flux effect on the image was evaluated by the signal-difference-to-noise ratio (SDNR) between iodine and the background material. The changes of photon flux affected the recorded energy spectra and image. The thickness of the PFC filter that showed the maximum SDNR differed according to the tube voltage. The 10 mm PFC filter showed the highest SDNR at 50 and 70 kVp, while the 30 mm PFC filter exhibited the highest SDNR at 90 kVp. The SDNR was improved up to, on average, 30-fold in optimal photon flux conditions which acquired a spectrum including the lowest electronic noise with no pulse pile-up effect. The results of this study showed that the photon flux affected not only the acquired energy spectrum but also the image. Based on these results, the spectral distortion correction should be considered in connection with the image that is the ultimate purpose of medical imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call