Abstract
The effects of phosphorylation pre-treatments at 1.5, 2.5, and 3.5% levels, as well as microwave application at 200, 400, and 700 watts levels for 2 min, on the functional parameters of egg white powder obtained by the freeze dryer procedure were investigated. P1.5-M200 had the highest oil-holding capacity, emulsion stability, and emulsion activity, while P2.5-M200 had the highest foam capacity. The P2.5-M400 had the largest particle size, and P3.5-M200 had the highest degree of phosphorylation and protein solubility. On the other hand, P3.5-M200 had the highest solution viscosity by 1% (w/v), water-holding capacity, and foam stability, in the treatments that used phosphorylation and microwave treatment simultaneously. FTIR spectroscopy of the unfolding structure of egg white protein revealed changes in the protein’s secondary structure, such as the development of β-sheets and β-turns, as well as the binding of negatively charged phosphate groups on the serine, threonine, and tyrosine side chains. The phosphorylation and microwave treatments reduced the particle size of the egg white protein powder while increasing the surface area of the protein molecules, according to SEM analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.