Abstract

In educational settings, students rely on metacognitive processes to determine whether or not to exert effort. We investigated ways to minimize cognitively disengaged responses (i.e., not-fully-effortful responses) during a low-stakes mathematics assessment. Initially, we established theory-driven time thresholds for each item to detect such responses. We then administered the test to 800 eighth-graders across three conditions: (a) control (n = 271); (b) instruction (n = 267); and (c) nudge (n = 262). In the instruction condition, students were told to exert their best effort before starting the assessment. In the nudge condition, students were prompted to give their best effort following each first-attempt response that was both incorrect and not-fully-effortful. Therefore, students had multiple opportunities to adjust their level of effort. Nudges, but not effort instruction, significantly reduced students' not-fully-effortful responses. Neither the nudges nor the effort instruction significantly impacted performance. In a post-test survey, most students reported that they received nudges whenever they did not know the answer (55%). Overall, these findings suggest that while nudges reduce cognitively disengaged responses, most students appear to strategically modulate their level of effort based on self-monitoring their knowledge and response effort.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call