Abstract
Introduction: Partial liquid ventilation may benefit the lung disease in preterm neonates but intratracheal instillation of perfluorocarbon increases cerebral blood flow and may cause brain injury. We aimed to determine if the effects of perfluorocarbon administration on cerebral blood flow vary by dose-volume, rate of administration, endotracheal tube portal of entry, or closely targeting PaCO2. Methods: Forty-two dosing events (in eleven rabbits) were randomised to different dosing strategies, including a sham (i.e., placebo/control) dose of air over 20 min, 20 mL/kg of perfluorocarbon slowly over 20 min, 10 mL/kg of perfluorocarbon slowly over 20 min, 10 mL/kg of perfluorocarbon moderately fast over 10 min, 10 mL/kg of perfluorocarbon rapidly over 5 min, 10 mL/kg of perfluorocarbon slowly over 20 min via the endotracheal tube tip lumen (as opposed to the proximal end of the tube used in all other groups), or 10 mL/kg of perfluorocarbon slowly over 20 min whilst targeting a PaCO2 of 45 - 50 mmHg. Blood gases, haemodynamics, cortical cerebral blood flow and carotid flow were recorded continuously for 30 minutes from the start of each dose. Results: Carotid flow increased with 20 mL/kg perfluorocarbon and cortical cerebral blood flow was significantly more variable. Carotid and cortical cerebral blood flow increased using 10 mL/kg or 20 mL/kg with no difference between the two dose-volumes. There was no difference in cerebral blood flow by rate of administration, but carotid blood flow was more variable during slow administration. There were no differences in the increase in cerebral blood flow by portal of entry. If PaCO2 was maintained between 45 - 50 mmHg there was no increase in cerebral blood flow and there was less variable carotid flow. Conclusions: Cerebral blood flow increases with perfluorocarbon dosing. This occurs regardless of the dose-volume of perfluorocarbon. These effects were mitigated by closely targeting PaCO2.
Highlights
Partial liquid ventilation may benefit the lung disease in preterm neonates but intratracheal instillation of perfluorocarbon increases cerebral blood flow and may cause brain injury
Carotid blood flow was increased relative to baseline during the initial 20 minute dose of 20 mL/kg perfluorocarbon when starting partial liquid ventilation compared with continuing on pressure-controlled conventional mechanical ventilation—Mann-Whitney test p = 0.04 at the end of the dose and p = 0.04 at the time of maximum difference (21 min)
Non-statistically significant effects were seen in cortical cerebral blood flow
Summary
Partial liquid ventilation may benefit the lung disease in preterm neonates but intratracheal instillation of perfluorocarbon increases cerebral blood flow and may cause brain injury. We aimed to determine if the effects of perfluorocarbon administration on cerebral blood flow vary by dose-volume, rate of administration, endotracheal tube portal of entry, or closely targeting PaCO2. Carotid and cortical cerebral blood flow increased using 10 mL/kg or 20 mL/kg with no difference between the two dose-volumes. This occurs regardless of the dose-volume of perfluorocarbon These effects were mitigated by closely targeting PaCO2. Preterm infants, especially those born extremely preterm, require a great deal of support ex utero. A recent experimental study has renewed the promise that partial liquid ventilation has significant potential to alter the course of neonatal lung disease and reduce respiratory morbidity [4]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.