Abstract

We determined the amino acid abundances and enantiomeric compositions of the Antarctic CI1 carbonaceous chondrites Yamato (Y)-86029 and Y-980115, as well as the Ivuna and Orgueil CI1 carbonaceous chondrites by liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Y-86029 and Y-980115 both show evidence of parent-body heating (500–600 °C) in addition to aqueous alteration, while Ivuna and Orgueil only show evidence for aqueous alteration. In contrast to Ivuna and Orgueil, which each contain ∼70 nmol/g of amino acids in acid-hydrolyzed, water extracts, both heated Yamato CI meteorites contain only low levels of amino acids that were primarily l-enantiomers of proteinogenic amino acids, indicating that they are likely to be terrestrial in origin. Because indigenous amino acids have been found in meteorites that have experienced metamorphic temperatures of >1000 °C with only minimal aqueous alteration, heating alone is not sufficient to explain the lack of amino acids in Y-86029 and Y-980115. Rather, our data suggest that the combination of heating and aqueous alteration has a profound destructive effect on amino acids in meteorites. This finding has implications for the origins of amino acids and other molecules in the early evolution of our solar system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.