Abstract
In order to study the physiological significance of the coexistence of pancreatic polypeptide and norepinephrine (NE) in peripheral noradrenergic nerves, the effects of pancreatic polypeptides of several species were tested on the isolated rat vas deferens. Neuropeptide Y (NPY) was also studied because of its sequence homology to the pancreatic polypeptides. The contractile responses, which were mediated predominantly by activation of noradrenergic nerves following electrical stimulation, were inhibited by bovine pancreatic polypeptide (BPP), human pancreatic polypeptide (HPP), avian pancreatic polypeptide (APP) and NPY in a dose-dependent manner using a constant flow bath. The decreasing order of the inhibitory responses was as follows: BPP=HPP > NPY > APP. The inhibitory responses produced by BPP and HPP lasted more than 1 hr and displayed a marked tachyphylaxis. In contrast, the inhibitory effects induced by NPY and APP usually returned to the control level after 20–30 min and had minimal tachyphylaxis. The inhibitory action of NPY was still present during α-adrenergic blockade. Contractions produced by a single submaximal dose of exogenous NE or serotonin (5-HT) in unstimulated preparations were not affected by pretreatment with NPY. The amplitude of contractions was partially reduced 1 min after pretreatment with BPP or HPP; recovery occurred about 15 min after peptide pretreatment in a constant flow bath. These results suggest that an NPY receptor exists presynaptically in the rat vas deferens and that stimulation of the receptor by NPY inhibits the release of NE from noradrenergic nerves. It is concluded that both BPP and HPP act by a presynaptic inhibitory mechanism on noradrenergic nerve terminals and also have a nonspecific inhibitory action on smooth muscle cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.