Abstract

In the present study, palm oil has been tested to study its capability as a lubricant to replace commercial mineral oil. To enrich the performance, nanoparticles additives were added. Previous studies proved that by adding the small size of additives into lubricating oil can lessen the friction and improve anti-wear properties. In this research, the size of the nanoparticle used was below 20nm. Four ball tester following ASTM D4072-94 was conducted to determine the optimum concentration of palm oil bio-lubricant with Nano-clay additive ranged from 0.02% to 0.08%wt. The results discovered that 0.04wt% of Nano-clay additive added into palm oil was the optimum concentration of the lubricant with the coefficient of friction 0.081, which recorded 16% reduction as compared to mineral oil (20W-40) – the reference lubricant. It also shows good anti-wear ability which the wear scar diameter was improved by 32%. The oil was then tested in journal bearing to characterize the hydrodynamic lubrication properties. The properties that have been observed were the coefficient of friction, pressure profile and temperature profile. The results showed that modified palm oil with Nano-clay provided better performance with low coefficient of friction (reduced more than 50% as compared to mineral oil) and also temperature profile (reduced up to 20% compared to mineral oil). As for the pressure profile, even slightly higher pressure recorded for palm oil due to lower viscosity, yet the pressure was improved with the presence of Nano-clay additive. In overall, it had been proven that palm oil with Nano-clay additive shows massive potential as an alternative lubricant to the same range with the current industrial mineral oil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call