Abstract

An indoor air quality model was used to predict dynamic particle mass concentrations based on homogeneous chemical mechanisms and partitioning of semi-volatile products to particles. The ozone–limonene reaction mechanism was combined with gas-phase chemistry of common atmospheric organic and inorganic compounds and incorporated into the indoor air quality model. Experiments were conducted in an environmental chamber to investigate secondary particle formation resulting from ozone/limonene reactions. Experimental results indicate that significant fine particle growth occurs due to the interaction of ozone and limonene and subsequent intermediate by-products. Secondary particle mass concentrations were estimated from the measured particle size distribution. Predicted particle mass concentrations were in good agreement with experimental results—generally within ∼25% at steady-state conditions. Both experimental and predicted results suggest that air exchange rate plays a significant role in determining secondary fine particle levels in indoor environments. Secondary particle mass concentrations are predicted to increase substantially with lower air exchange rates, an interesting result given a continuing trend toward more energy efficient buildings. Lower air exchange rates also shifted the particle size distribution toward larger particle diameters. Secondary particle mass concentrations are also predicted to increase with higher outdoor ozone concentrations, higher outdoor particle concentrations, higher indoor limonene emission rates, and lower indoor temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call