Abstract
Rat lenses in organ culture were exposed to activated species of oxygen generated in the culture medium either by xanthine oxidase and hypoxanthine or by riboflavin and visible light, two systems which have been shown to produce superoxide and H 2O 2. In each case there was marked damage to carrier-mediated transport systems of the lens. Under standard culture conditions this damage was strongly inhibited by catalase, but not by superoxide dismutase (SOD). By the addition to the medium of chelated iron, hydroxyl radicals were produced in a Fenton reaction with a concomitant decrease in H 2O 2 levels. With both oxygen radical-generating systems, the addition of chelated iron strongly inhibited lens damage. This inhibitory effect could be reversed by the addition of SOD with the chelated iron. Under such conditions SOD converts superoxide anion to H 2O 2, thereby preventing reduction of the chelated iron and thus stopping the generation of hydroxyl radicals. Increased lens damage following addition of SOD to the iron-containing systems correlated with higher H 2O 2 concentrations, and was inhibited by catalase. These findings suggest that, when generated in the fluids surrounding the lens, H 2O 2 poses a much greater oxidative stress for the lens than do the superoxide or hydroxyl free radicals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.