Abstract

In this work oxidized and oxide-free amorphous boron (a-B) powder and elemental Mg were used in an attempt to directly synthesize the Mg(BH4)2 complex hydride by controlled reactive mechanical alloying (CRMA) under hydrogen in a magneto-mill up to 200h. The particle size was refined to the 100-200nm range. Nanocrystalline MgH2 (~6nm crystallite size) was formed within the particles when an oxidized a-B is used. In contrast, a mixture of MgB2 and an amorphous hydride MgHx was formed when an oxide-free a-B was used. Differential scanning calorimetry (DSC) test up to 500°C produced a single endothermic heat event at 357.7°C due to hydrogen desorption. In addition, desorption conducted in a Sieverts-type apparatus revealed ~1.4wt.% of hydrogen release. The X-ray diffraction pattern after DSC test of the 200h milled sample made with oxide-free boron showed the presence of MgB2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.