Abstract

Buildings account for nearly 40% of the end-use energy consumption and carbon emissions globally. These buildings, once built, are bound to be utilized for several decades if not longer. The building sector, therefore, holds a significant responsibility for implementing strategies to increase energy efficiency and reduce carbon emissions and thus contribute to global efforts directed toward mitigating the adverse effects of climate change. This paper presents an overview of the effect of building orientation on energy consumption in buildings for the extreme cold weather conditions in Astana (capital of the Republic of Kazakhstan), with temperature ranging between −35 and +40 °C. Passive design features coupled with integration of renewable energy technologies have been identified for the next generation of buildings in Astana. The specific nature of the work is intentional; it is a continuing attempt to generate relevant know how that has direct relevancy to Astana's system approach to energy conservation to meet its extreme winters. Simulations allowed assessing how changing certain input variables can impact the overall energy consumption of the considered object. The simulation results have shown that orientation of a building can significantly affect the energy usage rate. In fact, the building rotation has justified the initial assumptions that building orientation affects its energy consumption. The South and North facing directions are found to be the most energy efficient (initial orientation is 35 degrees toward the North-East). These findings have been confirmed by the separate calculations based on the local and international standards and codes. Keywords: energy, low energy design, passive solar heating and cooling, extreme weather conditions and energy consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call