Abstract
To address the problem of insufficient temperature and salt resistance of existing polymer viscosity enhancers, we designed an organic-inorganic hybrid composite as a viscosity enhancer for water-based drilling fluids, named LAZ, and it was prepared by combining a water-soluble monomer and lithium magnesium silicate (LMS) using an intercalation polymerization method. The composite LAZ was characterized using Fourier transform infrared spectroscopy, transformed target X-ray diffractometry, scanning electron microscopy, and thermogravimetric analysis. The rheological properties of the composite LAZ were evaluated. The composite LAZ was used as a water-based drilling fluid viscosity enhancer, and the temperature and salt resistance of the drilling fluid were evaluated. The results showed that the composite LAZ presented a complex reticulation structure in an aqueous solution. This reticulation structure intertwined with each other exhibited viscosity-enhancing properties, which can enhance the suspension properties of water-based drilling fluids. The aqueous solution of the composite LAZ has shear dilution properties. As shear rate increases, shear stress becomes larger. The yield stress value of the aqueous solution increases as the composite LAZ's concentration increases. The aqueous solution of the composite LAZ exhibits strong elastic characteristics with weak gel properties. The addition of the composite LAZ to 4% sodium bentonite-based slurry significantly increased the apparent viscosity and dynamic shear of the drilling fluid. The drilling fluids containing the composite LAZ had good temperature resistance at 150 °C and below. The rheological properties of brine drilling fluids containing the composite LAZ changed slightly before and after high-temperature aging at 150 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.