Abstract

The exploitation of petroleum in offshore areas is becoming more prosperous due to the increasing human demand for oil. However, the effects of offshore petroleum exploitation on the microbial community in the surrounding environment are still not adequately understood. In the present study, variations in the composition, function, and antibiotic resistance of the microbial community in marine sediments adjacent to an offshore petroleum exploitation platform were analyzed by a metagenomics-based method. Significant shifts in the microbial community composition were observed in sediments impacted by offshore petroleum exploitation. Nitrosopumilales was enriched in marine sediments with the activities of offshore petroleum exploitation compared to the control sediments. The abundances of function genes involved in carbon, butanoate, methane, and fatty acid metabolism in sediment microbial communities also increased due to the offshore petroleum exploitation. Offshore petroleum exploitation resulted in the propagation of some antibiotic resistance genes (ARGs), including a multidrug transporter, smeE, and arnA, in marine sediments via horizontal gene transfer mediated by class I integrons. However, the total abundance and diversity of ARGs in marine sediments were not significantly affected by offshore petroleum exploitation. This study is the first attempt to analyze the impact of offshore petroleum exploitation on the spread of antibiotic resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call