Abstract

Measurements of the endogenous RNA polymerase activities of nuclei isolated from immature rabbit uteri have shown that prior treatment of the animals with oestradiol-17beta has a profound effect on the apparent activities of both RNA polymerases A and B. Within 1 h of hormone treatment, the activity of RNA polymerase A is increased and continues to rise until about 4h when it reaches a plateau and remains steady until at least 8h. The activity of RNA polymerase B increases sharply after oestradiol treatment reaching an early maximum at 30-45 min. Thereafter this activity declines until by 1-2h it approaches control values but a second increase in activity then occurs with a maximum at 3-4h. Treatment of the rabbits with alpha-amanitin before the administration of oestradiol inhibits the hormone-induced stimulation of RNA polymerase A activity in isolated nuclei but when the administration of alpha-amanitin is delayed until after the early rise of RNA polymerase B activity, the oestradiol-induced stimulation of RNA polymerase A is retained. Similar results have been obtained in experiments with cycloheximide suggesting that the stimulation of RNA polymerase A activity by oestradiol is dependent on the hormone-induced stimulation of RNA polymerase B and the subsequent synthesis of protein using the RNA product of the early increase in RNA polymerase B activity. Measurement of the activities of RNA polymerases A and B after isolation of the enzymes from immature rabbit uterine nuclei before and after oestradiol treatment failed to show any differences. Therefore it would appear that the changes in the observed activities of RNA polymerases A and B in isolated nuclei are consequences of changes in the structure and function of chromatin rather than the results of modifications in the RNA polymerases themselves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call