Abstract

Thermal non-equilibrium (TNE) is believed to be a potentially important process in understanding some properties of the magnetically closed solar corona. Through one-dimensional hydrodynamic models, this paper addresses the importance of the numerical spatial resolution, footpoint heating timescales and background heating on TNE. Inadequate transition region (TR) resolution can lead to significant discrepancies in TNE cycle behaviour, with TNE being suppressed in under-resolved loops. A convergence on the periodicity and plasma properties associated with TNE required spatial resolutions of less than 2 km for a loop of length 180 Mm. These numerical problems can be resolved using an approximate method that models the TR as a discontinuity using a jump condition, as proposed by Johnston et al. (2017a, A&A, 597, A81; 2017b, A&A, 605, A8). The resolution requirements (and so computational cost) are greatly reduced while retaining good agreement with fully resolved results. Using this approximate method we (i) identify different regimes for the response of coronal loops to time-dependent footpoint heating including one where TNE does not arise and (ii) demonstrate that TNE in a loop with footpoint heating is suppressed unless the background heating is sufficiently small. The implications for the generality of TNE are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.