Abstract

The effects of potassium channel opening drugs and intracellular nucleotides on the ATP-sensitive K+ (KATP) channel composed of SUR2A and Kir6.2 in HEK293T cells were examined using the patch-clamp technique. The SUR2A/Kir6.2 channel was activated effectively by pinacidil, marginally by nicorandil but not by diazoxide. The pinacidil-activated channel currents were inhibited by glibenclamide with a Ki value of 160 nM. Upon formation of inside-out (I-O) patches, spontaneous openings of the channels appeared, which were inhibited by intracellular ATP (ATPi) equipotently in the presence and in the absence of intracellular Mg2+ (Mg2+i). The channel activity ran-down gradually in I-O patches. The run-down channels could be reactivated by ATPi only in the presence of Mg2+i. Uridine 5'-diphosphate (UDP) antagonized the ATPi-mediated inhibition of the channel activity before run-down. After run-down, UDP activated the channel without antagonizing ATPi-mediated channel inhibition. Thus, the SUR2A/Kir6.2 reproduced the major properties of the native cardiac KATP channel well in terms of nucleotide regulation and pharmacology, and therefore can be a useful tool with which to elucidate the molecular mechanisms characterizing the KATP channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.