Abstract

Summary Spontaneous imbibition is a capillary-dominated displacement process in which a nonwetting fluid is displaced from a porous medium by the inflow of a more-wetting fluid. Decades of core-scale experiments have concluded that spontaneous imbibition occurs by a uniformly shaped saturation front with a rate that scales with the square root of time. The imbibition rate during early stages of spontaneous imbibition (the onset period) has been reported to deviate from the square-root-of-time behavior, although its effect on the imbibition process is not well-understood. Controlled-imbibition tests, presented in this paper, demonstrate that restricted wetting-phase flow during the onset period gives irregular saturation fronts and deviation from the square-root-of-time behavior. The deviation was caused by local variation in porosity and permeability or by a nonuniform wettability distribution, and was directly visualized or imaged by positron-emission tomography (PET). Without knowledge of local flow patterns, the development of irregular saturation fronts cannot be observed; hence, the effect cannot be accounted for, and the development of spontaneous imbibition might be erroneously interpreted as a core-scale wettability effect. Restricted wetting-phase flow at the inlet affects Darcy-scale wettability measurements, scaling, and modeling; our observations underline the need for a homogeneous wettability preference through the porous medium when performing laboratory spontaneous-imbibition measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call