Abstract

In this work, we investigate how the complex structure found in solar wind proton velocity distribution functions (VDFs), rather than the commonly assumed two-component bi-Maxwellian structure, affects the onset and evolution of parallel-propagating microinstabilities. We use the Arbitrary Linear Plasma Solver, a numerical dispersion solver, to find the real frequencies and growth/damping rates of the Alfvén modes calculated for proton VDFs extracted from Wind spacecraft observations of the solar wind. We compare this wave behavior to that obtained by applying the same procedure to core-and-beam bi-Maxwellian fits of the Wind proton VDFs. We find several significant differences in the plasma waves obtained for the extracted data and bi-Maxwellian fits, including a strong dependence of the growth/damping rate on the shape of the VDF. By applying the quasilinear diffusion operator to these VDFs, we pinpoint resonantly interacting regions in velocity space where differences in VDF structure significantly affect the wave growth and damping rates. This demonstration of the sensitive dependence of Alfvén mode behavior on VDF structure may explain why the Alfvén ion-cyclotron instability thresholds predicted by linear theory for bi-Maxwellian models of solar wind proton background VDFs do not entirely constrain spacecraft observations of solar wind proton VDFs, such as those made by the Wind spacecraft.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.