Abstract

A four-member equivalence class (A----B----C----D) can be formed by training AB, BC, and CD. The nodal stimuli, B and C, mediate all of the derivative (transitive and equivalence) relations in the class. The derivative relations AC, CA, BD, and DB are separated by one node, whereas AD and DA are separated by two nodes. How do the number of nodes that separate the stimuli in a derivative relation influence the induction of stimulus control exerted by that relation? Seven college students learned two four-member classes made up of nonsense syllables. After training, all derivative relations were presented repeatedly without informative feedback. Stimulus control exerted by each derivative relation was assessed concurrently. For the 7 subjects, control exerted by the derivative relations increased gradually with repeated presentations. With 6 of the 7 subjects, the one-node relations exerted more control than the two-node relations during the process. However, the disparity between the one- and two-node relations decreased with repeated presentations. Eventually, all derivative relations exerted complete control. The control exerted by derivative relations during induction was inversely related to the number of nodes separating the terms in the derivative relations. These results demonstrate that nodal distance is a determinant of the relatedness of stimuli in equivalence classes. The findings are discussed in terms of remote association, semantic memory networks, and the study of transitive inference.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call