Abstract

The mammalian cortices show an specific architecture close to the optimum, represented by the high clustering, short processing steps and short wiring length. What are the key factors that influence the layout of neural connectivity networks? Here a model to investigate the conditions leading to the small-world cortical networks with minimal global wiring is presented. The essential factors in this model are the introductions of the unequal number distribution of heterogeneous neurons and two connection mechanisms, the preferential attachment to neurons with large spatial coverage (PANLSC) and distance preference. Outcomes show that the specific architecture close to the optimum can only result from the PANLSC when the number distribution of neurons with diverse spatial coverage is highly unequal. This suggests the PANLSC may be an important connection mechanism in cortical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.