Abstract

The current study investigated the effects of nesfatin-1 in the hypothalamic paraventricular nucleus (PVN) on gastric motility and the regulation of the lateral hypothalamic area (LHA). Using single unit recordings in the PVN, we show that nesfatin-1 inhibited the majority of the gastric distention (GD)-excitatory neurons and excited more than half of the GD-inhibitory (GD-I) neurons in the PVN, which were weakened by oxytocin receptor antagonist H4928. Gastric motility experiments showed that administration of nesfatin-1 in the PVN decreased gastric motility, which was also partly prevented by H4928. The nesfatin-1 concentration producing a half-maximal response (EC50) in the PVN was lower than the value in the dorsomedial hypothalamic nucleus, while nesfatin-1 in the reuniens thalamic nucleus had no effect on gastric motility. Retrograde tracing and immunofluorescent staining showed that nucleobindin-2/nesfatin-1 and fluorogold double-labeled neurons were observed in the LHA. Electrical LHA stimulation changed the firing rate of GD-responsive neurons in the PVN. Pre-administration of an anti- nucleobindin-2/nesfatin-1 antibody in the PVN strengthened gastric motility and decreased the discharging of the GD-I neurons induced by electrical stimulation of the LHA. These results demonstrate that nesfatin-1 in the PVN could serve as an inhibitory factor to inhibit gastric motility, which might be regulated by the LHA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.