Abstract

ABSTRACTWe present a study of anisotropic parameter estimation in the near‐surface layers for P‐wave and converted‐wave (C‐wave) data. Near‐surface data is affected by apparent anisotropy due to a vertical velocity compaction gradient. We have carried out a modelling study, which showed that a velocity gradient introduces apparent anisotropy into an isotropic medium. Thus, parameter estimation will give anomalous values that affect the imaging of the target area.The parameter estimation technique is also influenced by phase reversals with diminishing amplitude, leading to erroneous parameters. In a modelling study using a near‐surface model, we have observed phase reversals in near‐surface PP reflections. The values of the P‐wave anisotropy parameter η estimated from these events are about an order of magnitude larger than the model values. Next, we use C‐wave data to estimate the effect of anisotropy (χ) and compute η from these values. These calculated η‐values are closer to the model values, and NMO correction with both η‐values shows a better correction for the calculated value. Hence, we believe that calculating η from χ gives a better representation of the anisotropy than picked η from the P‐wave.Finally, we extract the anisotropy parameters η and χ from real data from the Alba Field in the North Sea. Comparing the results with reference values from a model built according to well‐log, VSP and surface data, we find that the parameters show differences of up to an order of magnitude. The η‐values calculated from the C‐wave anisotropy parameter χ fit the reference values much better and show values of the same order of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.