Abstract

KIC 10553698A is a hot pulsating subdwarf B (sdB) star observed by the Kepler satellite. It exhibits dipole (l = 1) and quadrupole (l = 2) gravity modes with a clear period spacing structure. The seismic properties of the KIC 10553698A provide a test of stellar evolution models, and offer a unique opportunity to determine mixing processes. We consider mixing due to convective overshooting beyond the boundary of the helium burning core. Very small overshooting ( f = 10^{-6} ) results in a progressive increase in the size of convective core. However, moderate ( f = 10^{-2} ) and small ( f = 10^{-5} ) overshooting both lead to the occurrence of inert outer convective shells in the near-core region. We illustrate that the chemical stratifications induced by convective shells are able to change the g-mode period spacing pattern of a sdB star appreciably. The mean period spacing and trapping of the gravity modes in the model with moderate and small core overshooting are fully consistent with the period spacing trends observed in KIC 10553698A. Atomic diffusion driven by gravitational settling as well as thermal and chemical gradients is applied to reach a better match with the observed period spacings. Models that include small or very small overshooting with atomic diffusion have a decreased lifetime of the extreme horizontal branch phase and produce chemical stratification induced by convective shells during helium burning phase. In addition of being consistent with asteroseismology, their calculated values of the R2 parameter are more compatible with the observed R2 values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.